this post was submitted on 17 Jul 2025
7 points (76.9% liked)

Space

1591 readers
19 users here now

A community to discuss space & astronomy through a STEM lens

Rules

  1. Be respectful and inclusive. This means no harassment, hate speech, or trolling.
  2. Engage in constructive discussions by discussing in good faith.
  3. Foster a continuous learning environment.

Also keep in mind, mander.xyz's rules on politics

Please keep politics to a minimum. When science is the focus, intersection with politics may be tolerated as long as the discussion is constructive and science remains the focus. As a general rule, political content posted directly to the instance’s local communities is discouraged and may be removed. You can of course engage in political discussions in non-local communities.


Related Communities

🔭 Science

🚀 Engineering

🌌 Art and Photography


Other Cool Links


founded 2 years ago
MODERATORS
top 2 comments
sorted by: hot top controversial new old

The main contributors to ozone depletion from rocket emissions are gaseous chlorine and soot particles. Chlorine catalytically destroys ozone molecules, while soot particles warm the middle atmosphere, accelerating ozone-depleting chemical reactions.

While most rocket propellants emit soot, chlorine emissions primarily come from solid rocket motors. Currently, the only propulsion systems that have a negligible effect on the ozone layer are those which use cryogenic fuels such as liquid oxygen and hydrogen. However, due to the technological complexity of handling cryogenic fuels, only about 6% of rocket launches currently use this technology.

I wonder how methalox engines perform when it comes to soot emissions, given that most modern rocket designs seem to be heading that way?

[–] DirigibleProtein@aussie.zone 3 points 2 days ago

He looks very happy about it.