137
this post was submitted on 11 Oct 2024
137 points (96.6% liked)
Technology
59422 readers
2852 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
As far as I can tell (not as an expert), the pitfalls and unforeseen issues are probably pretty much what they'd be for every new battery chemistry: how safe is it? Does it have really bad self-discharge? Is the supply consistent? How does it do at low charging levels? How long/how many cycles does such a cell last? Does it require an unsustainable amount of exotic minerals?
As well as what they are for any new technology: what is the replacement cost? Can they be installed in existing technology via drop-in or with a simple retrofit, or do you have to replace the entire unit? How long before they come to market? Can they maintain supply to match demand?
Probably a lot of those questions are business-related rather than technology-related (i.e. "will the companies developing this stuff put enough into R&D to solve these problems before releasing them?" not "do the laws of the universe allow this?"). I am not an expert, but before I put all my chips on solid-state batteries (something I'm pretty confident will be the norm eventually), I would want those answered.