this post was submitted on 23 Oct 2024
131 points (98.5% liked)
Asklemmy
44149 readers
1670 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
It's weird but the amount of natural numbers is "countable" if you had infinite time and patience, you could count "1,2,3..." to infinity. It is the countable infinity.
The amount of numbers between 1 and 2 is not countable. No matter what strategies you use, there will always be numbers that you miss. It's like counting the numbers of points in a line, you can always find more even at infinity. It is the uncountable infinity.
I greatly recommand you the hilbert's infinite hotel problem, you can find videos about it on youtube, it covers this question.
Because the second one is bounded ?