581
this post was submitted on 04 Jul 2025
581 points (97.7% liked)
Technology
72452 readers
3614 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
That is the main criticism of nuclear, it should hopefully get better with Westinghouse’s AP1000 receiving full approval and being built all across China so as long as we continue to use the same design it can start to be mass produced instead of making all the parts as one offs that are much more expensive and time consuming
Vogtle added 2 AP1000 reactors for $35 billion. Future deployments might be cheaper, but there's a long way to go before it can compete with pretty much any other type of power generation.
They had to switch halfway through which is what added the cost that’s not a realistic cost per reactor
Ok, current projections are still for the next two AP1000s at Vogtle to be something like $10 billion. That's just not cost competitive with solar/wind. And it's also not very realistic to assume that there won't be cost overruns on the next one, either. Complex engineering projects tend to run over.
Next two? After you mentioned it I tried googling and can’t find anything about current projections for new AP1000s at vogtle.
This paper lays out the cost projections that one could expect with the lessons learned from Vogtle Units 3 & 4, with the tax credits and government guarantees available as of 2024:
https://web.mit.edu/kshirvan/www/research/ANP201%20TR%20CANES.pdf
According to the link you listed an AP1000 costs $66/MWh where as from the ember report that’s linked in this article solar plus storage for 97% uptime cost $104/MWh in a sunny city. In Washington DC it would cost $124 and only be able to maintain 81%. I still stand by even with the higher cost that solar + storage is a better option in places like Arizona, Nevada, Southern California ,etc. but nuclear is not as much of the high cost boogeyman as you are making it out to be
https://ember-energy.org/latest-insights/solar-electricity-every-hour-of-every-day-is-here-and-it-changes-everything/
My problem with nuclear is both the high cost and, somewhat counterintuitively, the very long life cycles to spread that high cost. The economics only make sense if the plant runs for 75 years, which represents an opportunity cost of displacing whatever might be available in 25 or 50 years.
A solar plant planned in 2025 might be online in 2027, and decommissioned in 2047, replaced with whatever technology/economics are available then. But a new nuclear reactor bakes in the costs for 80+ years, to be paid by ratepayers who haven't been born yet.
So if in 2050 a 2030-constructed nuclear plant is still imposing costs of $66/MWh on ratepayers, to finance the interest and construction costs from 25 years earlier, will that be competitive with the state of solar/wind/batteries/hydrothermal at that time? Given the past trend lines, it seems economically foolish to lock in today's prices for the next 80 years.
Except there is also inflation that in the U.S. for the past 75 years has been 3.8% so the cost of $66 per MWh would be the equivalent purchasing power cost of about $4.85 by the end of the plant life. The long lifecycle is good for environmental purposes as well as you don’t need to do constant construction and constantly dispose of rare earth metals and concrete
No, LCOE is an aggregated sum of all the cash flows, with the proper discount rates applied based on when that cash flow happens, complete with the cost of borrowing (that is, interest) and the changes in prices (that is, inflation). The rates charged to the ratepayers (approved by state PUCs) are going to go up over time, with inflation, but the effect of that on the overall economics will also be blunted by the time value of money and the interest paid on the up-front costs in the meantime.
When you have to pay up front for the construction of a power plant, you have to pay interest on those borrowed funds for the entire life cycle, so that steadily increasing prices over time is part of the overall cost modeling.