this post was submitted on 20 Jun 2024
109 points (85.6% liked)

Technology

59317 readers
4562 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] someguy3@lemmy.ca 8 points 4 months ago (2 children)

EVs are more expensive up front, then cost less as electricity is cheaper than gas. And cheaper maintenance and longer lifespan.

[–] Zorsith@lemmy.blahaj.zone 15 points 4 months ago* (last edited 4 months ago)

Vimes Boots Theory.

The reason that the rich were so rich, Vimes reasoned, was because they managed to spend less money.

Take boots, for example. He earned thirty-eight dollars a month plus allowances. A really good pair of leather boots cost fifty dollars. But an affordable pair of boots, which were sort of OK for a season or two and then leaked like hell when the cardboard gave out, cost about ten dollars. Those were the kind of boots Vimes always bought, and wore until the soles were so thin that he could tell where he was in Ankh-Morpork on a foggy night by the feel of the cobbles.

But the thing was that good boots lasted for years and years. A man who could afford fifty dollars had a pair of boots that'd still be keeping his feet dry in ten years' time, while the poor man who could only afford cheap boots would have spent a hundred dollars on boots in the same time and would still have wet feet.

This was the Captain Samuel Vimes 'Boots' theory of socioeconomic unfairness.

[–] pumpkinseedoil@sh.itjust.works 1 points 4 months ago* (last edited 4 months ago) (1 children)
  • Yes, but you have to drive a lot to make up for the price. Dropping from 10€ per 100 km to 5€ per 100 km and slightly less maintenance cost (modern Diesel motors - and by modern I mean the last few decades, given that the motor has been treated well - are pretty carefree already) takes a long time to pay off. If you drive 10.000 km per year that'll save you 500€ per year + minor maintenance savings, but you pay 10.000+ € more when buying the car. For electric motorcycles it's even less notable since they need less fuel.

  • Lifespan also is difficult to evaluate. I'm currently using a 25 year old Skoda Octavia and it's still causing no problems and I still could resell it for 3000-4000€. When driving an EV for 20+ years you'll very likely have to replace the battery, probably twice (easily 10.000€ with current batteries every time you need a new one).

  • Another point: Resell value. Due to battery degradation and especially very quick technological advancements EVs tend to lose their value quicker than fuel powered vehicles.

I really want to buy an EV but it just doesn't make sense yet. Give me an EV that's not wasting any money on fancy screens, excessively good speakers, ... with like 300 km of effective uphill range for a reasonable price and I'm in.

[–] someguy3@lemmy.ca 5 points 4 months ago* (last edited 4 months ago) (1 children)

Some quick math from this https://www.realclearscience.com/articles/2022/09/22/how_expensive_is_it_to_charge_an_ev_in_europe_and_is_it_really_cheaper_than_gas_854618.html#!

Puts slow charging at 1/4 the price of gasoline. That's substantial.

Other searching says average of 18k km per year in Europe. With 6 l/ 100 km average age 1.76€/ l, gasoline costs €1,901 per year. Vs €475 for electricity. Saving €1,426 a year (1,527 US) Do that for 10 years and that's €14,260 saved ($15, 270 US). I can only expect that savings will increase as gas prices go up.

As for maintenance anything with a timing belt is going to have a massive maintenance cost. There's just no comparison in the design of these things. Electric motors have such a simple design. ICE cars have oil changes, transmission oil changes, coolant changes, spark plugs, starters, 12 v battery, accessory belt, timing belt, alternator. Yes EV's have a 12v battery and coolant but these are not taxed nearly as much as ice cars.

EV motors are so simple they'll handily outlast ice engines. And no transmission either. Boy if you've ever had transmission problems you'd never want another, EVs don't have that. Tesla used to be on about a million mile drivetrain warranty because it really should be feasible. Ice cars can't ever get that (on average).

Batteries yeah we'll see how well new ones last. For a million miles you'll go through a few batteries, which get better each time.

[–] pumpkinseedoil@sh.itjust.works 2 points 4 months ago* (last edited 4 months ago) (1 children)

Alright, time to do actual numbers.

18.000 is heavily influenced by all the people driving >100.000 km per year, unless that's the median, not the average. I'm far below 10.000 and still waiting for it to be worth it for me. I'll calculate with 10.000 for now.

Modern ICE cars need far less than 6l. A modern VW Golf for example only needs 4-5 l per 100 km (4.5 avg, and yes it actually is that low, I've been driving a modern VW Golf at the military a few times and have tracked my average fuel consumption there).

Gas currently fluctuates from 1.525 to 1.599 in my area, so I'm always only filling the car on Monday mornings when it's 1.525.

10 000 * 1.525 * 4.5/100 = 686.25€ per year.

Even if there's a major crisis like when the war in Ukraine started and the price goes up to 2€ per liter for some time and I'm at 1.8€ average for the year (I have never had such a high average so this is really stretching it), we get 10 000 * 1.8 * 4.5/100 = 810€ per year. Worst case, never happened before scenario.

Economic modern EV need ~16 kWh per 100 km. The average price per kWh at home is 0.2€ in my area.

10 000 * 0.2 * 20/100 = 400€ per year.

= 286.25€ (410€ worst case) per year saved (purely for moving the car), assuming I always charge at home. If I do longer trips on holidays and have to charge somewhere else that gap gets lower.

Even when adding less taxes, less repairs (but modern engines really don't need much repairing, even though they're much more complex than electric motors and wasting more energy) it will still will take a long time to break equal (probably never because I need a new battery before breaking equal).

If I have an average of 10k km per year that's 16.200€ for 200.000 km over 20 years with an ICE car at 1.8€/l (higher average than I've ever experienced) or 6.400€ for the same with an electric car at 0.2€/kWh (which is below my average of the last two years). Ignoring inflation for simplicity, just assume my salary goes up with inflation so percentually it stays the same.

If I need a new battery (10.000€, actually more but I'll just say 10.000 for now since they'll likely go down at some point) every 10 years then I'm just about to break equal after 20 years, right before going negative again by buying another battery.

[–] someguy3@lemmy.ca 2 points 4 months ago* (last edited 4 months ago) (1 children)

You have an incredibly adversarial tone with that "actual numbers" as if mine aren't, so I'm not going to continue.

But I will point out I'm using averages and you are cherry picking low mileage per year, low fuel consumption, and low gas prices. And I'm guessing funny electric numbers to change 1/4 the cost of gas to nearly 2/3 the cost. And funny enough you are combining low mileage per year with moderately-high battery replacement rate. You are picking and choosing.

[–] pumpkinseedoil@sh.itjust.works 2 points 4 months ago* (last edited 4 months ago)

I meant actual numbers in regards to my last comment (the one you previously replied to) since I was just basing that one on calculations I did like a year ago. So now I made another comment where I used actual numbers instead of just roughly writing my conclusion from a year ago. It was not directed at your comment, sorry for the misunderstanding.

And I'm using low mileage per year because as I stated in the comment before this is about my situation, about if an EV is practical for me or if I'm forced to wait until they're getting cheaper. Currently I'm at around 5000 km per year, I use public transport a lot (and am not expecting that to change anytime soon).

Also the price per kWh is the average price per kWh in my area and is roughly the average I'm getting (I think I have 0.17€ rn since it's cheaper in summer but I also had 0.42€ already in winter so 0.2€ average really isn't high).

Battery replacement rate is based on this (first search result for ev battery degradation):

At the average degradation rate of 2.3% per year, an EV battery would take 15 years to decline to 70% maximum charge. However, as we expect EV battery life to decline non-linearly, there would likely be a more significant drop-off as the battery ages.

This means the battery is at 80% capacity after 10 years, which already drops the range below 300 km in winter for not insanely expensive EV. I do not have first hand experience on how many years a battery lasts, but even if it lasts 20 years (63% with this formula, although they do state that it's expected to decline quicker after longer usage, and current EVs wouldn't get my minimum 300 km winter range anymore) I'm still at break even point when buying a new battery after those 20 years.

That's why I'm holding off for now and just continue driving my reliable 25 year old Skoda, hoping for EV to become cheaper soon (all it takes is a new battery technology... the battery is why EVs are so expensive rn).

And your source is calculating with prices from 2019. Before COVID, before the Russo-Ukrainian war. I'm using numbers from this year.