this post was submitted on 12 Jul 2024
341 points (92.7% liked)

Technology

59629 readers
3105 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[โ€“] sugar_in_your_tea@sh.itjust.works 2 points 4 months ago (1 children)

It sounds like you're just reinventing either the JVM (runtime instruction translation), compilers (LLVM IR), or something in between (JIT interpreters).

The problem is that it's a hard problem to solve generally without expensive tradeoffs:

  • interpreter like JVM - will always have performance overhead and can't easily target arch-specific optimizations like SIMD
  • compiler - need a separate binary per arch, or have large binaries that can do multiple
  • JIT - runtime cost to compiling optimizations

Each is fine and has a use case, but I really don't think we need a hardware agnostic layer, we just need languages that help alleviate issues with different architectures. For example, Rust's ownership model may help prevent bugs that out of order execution may expose. It could also allow programmers to specify more strict limits on types (e.g. non-zero numbers, for example), which could aid arch-specific optimizations).

yeah pretty much. The JVM but marginally less skill issued lol.