this post was submitted on 19 Aug 2025
46 points (96.0% liked)

Explain Like I'm Five

18298 readers
1 users here now

Simplifying Complexity, One Answer at a Time!

Rules

  1. Be respectful and inclusive.
  2. No harassment, hate speech, or trolling.
  3. Engage in constructive discussions.
  4. Share relevant content.
  5. Follow guidelines and moderators' instructions.
  6. Use appropriate language and tone.
  7. Report violations.
  8. Foster a continuous learning environment.

founded 2 years ago
MODERATORS
 

I've been reading a lot about massive stellar objects, degenerate matter, and how the Pauli exclusion principle works at that scale. One thing I don't understand is what it means for two particles to occupy the same quantum state, or what a quantum state really is.

My background in computers probably isn't helping either. When I think of what "state" means, I imagine a class or a structure. It has a spin field, an energy_level field, and whatever else is required by the model. Two such instances would be indistinguishable if all of their properties were equal. Is this in any way relevant to what a quantum state is, or should I completely abandon this idea?

How many properties does it take to describe, for example, an electron? What kind of precision does it take to tell whether the two states are identical?

Is it even possible to explain it in an intuitive manner?

you are viewing a single comment's thread
view the rest of the comments
[–] ThatGuy46475@lemmy.world 4 points 3 weeks ago

One example would be the electrons in an atom. The shell, subshell, orbital and spin together make up one quantum state.

In a more general sense quantum states are solutions to the Schrödinger equation for a given system.