this post was submitted on 09 Jan 2024
25 points (96.3% liked)

3DPrinting

15343 readers
207 users here now

3DPrinting is a place where makers of all skill levels and walks of life can learn about and discuss 3D printing and development of 3D printed parts and devices.

The r/functionalprint community is now located at: !functionalprint@kbin.social or !functionalprint@fedia.io

There are CAD communities available at: !cad@lemmy.world or !freecad@lemmy.ml

Rules

If you need an easy way to host pictures, https://catbox.moe may be an option. Be ethical about what you post and donate if you are able or use this a lot. It is just an individual hosting content, not a company. The image embedding syntax for Lemmy is ![](URL)

Moderation policy: Light, mostly invisible

founded 1 year ago
MODERATORS
 

I'm reconfiguring my printing closet (~6'x6') for a new printer and thought about enclosing the printer in a moderate sized cabinet (~2'x3'x6' - one "shelf" of the closet) for thermal control. Since there will be inevitable opening and closing, as well as just normal infiltration of the ambient air (usu ~65F between 40-75% RH) it would seem like a good application for a Peltier dehumidifier to keep the RH in the chamber low and reduce my need to re-dry filament which has been on the machine during (inevitable) multi-day or -week downtime between projects.

you are viewing a single comment's thread
view the rest of the comments
[–] empireOfLove2@lemmy.dbzer0.com 2 points 8 months ago* (last edited 8 months ago)

You're thinking of carnot efficiency power cycles where you are removing energy from a fluid, maybe? I meant exactly what I said with their COP.

Refrigeration/heat pump cycle COP's can be all over the place. Often they are much higher than 1.0. Where a refrigeration cycle's COP is calculated as Q(cold) / Work(electrical), many heat pumps can move more watts than they take to run. TEC's are no exception.

TEC's in particular are especially sensitive to the total temperature differential between hot and cold plates when it comes to COP. They hate making temperature differentials much higher than 30-40 kelvin. Most efficient when the temperature delta is like 10K or less. COP 0.6 is about typical for a TEC running across the fairly large temperature differential that you would need to get air down to dew point and condense water, at a high current required to make the TEC's cost effective. Example graph of COP vs temperature differential