this post was submitted on 29 Jan 2024
37 points (95.1% liked)

3DPrinting

15600 readers
220 users here now

3DPrinting is a place where makers of all skill levels and walks of life can learn about and discuss 3D printing and development of 3D printed parts and devices.

The r/functionalprint community is now located at: !functionalprint@kbin.social or !functionalprint@fedia.io

There are CAD communities available at: !cad@lemmy.world or !freecad@lemmy.ml

Rules

If you need an easy way to host pictures, https://catbox.moe/ may be an option. Be ethical about what you post and donate if you are able or use this a lot. It is just an individual hosting content, not a company. The image embedding syntax for Lemmy is ![](URL)

Moderation policy: Light, mostly invisible

founded 1 year ago
MODERATORS
 

As you might be aware BambuLab issued a recall for the BambuLab A1 3d-printer. In particular, the issue is the mains-voltage (230V AC) heat bed cable.

As a resolution, they offer two solutions:

  1. Ship the entire printer back to them and receive a replacement printer.
  2. They mail a new cable and you install it.

What BambuLab doesn't mention at all is the test according to EN 50678 (Verification of the effectiveness of protective measures of electrical equipment after repair). Unless you can perform this test I would recommend choosing the printer replacement.

you are viewing a single comment's thread
view the rest of the comments
[–] cecilkorik@lemmy.ca 4 points 9 months ago (1 children)

DC adds an extra layer of isolation if something goes wrong, and an extra place for it to fail safely in a nicely enclosed metal box. It takes a really catastrophic failure for a 28A DC power supply to go much beyond 28A for very long. A mains supply can do it all day long unless there's some other form of protection like a fuse or isolation transformer.

[–] EmilieEvans@lemmy.ml 5 points 9 months ago

From my experience contact failure is the most common cause of failures: 3A can go wrong. 28A is a bad day.

Similarly, a fuse won't protect at all against contact failures (the fuse doesn't care as the current doesn't rise) and active monitoring isn't found outside the industrial applications.

To provide some numbers on cables: A German company specifies their drag chain cables for 10 mio. cycles and they maintain a test lab to verify it and get the data required for the lifetime calculator. QC is excellent as well. In other words: Very unlikely the cable will be the issue. Assuming you see it as an issue there is always the option to use double insulated cables (no short or exposed conductors; designed to fail open). A TPE insulation rubbing through is also highly unlikely.

The contact points (connectors) are challenging. These conductors need to connect to another conductor, PCB or ceramic element so that it can withstand the vibration, acceleration, corrosion, etc. The higher the current is the lower the contact resistance needs to be the more it is susceptible to small changes.

Another problem with high currents is their electromagnetic radiation.