this post was submitted on 09 Mar 2024
368 points (94.0% liked)
Technology
60075 readers
3535 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
How would that anti-air against small drones look like? It is not easy.
Probably miniaturized versions of CIWS / C-RAM or laser systems.
These small drones attack single people and small infantry groups as well as small vehicles up to heavy armor. With laser there is the issue of portability, especially power supply. Also cheap reflective coating requires very high power densities for a kill. Apart from detection and tracking which can use fused microphone array and camera array data the time to react is very short and it has to provide high density of fire on the cheap. I've seen some shotgun use with very limited effectivity. Ditto nets. Maybe antidrone swarms can work, but power limits loitering time. Swarm attacks can easily overwhelm protection.
It looks like a hard problem.
I haven't really been paying much attention, but last I looked, lasers ran into sustained-rate-of-fire issues, which is one of the things that you'd want something like this to be able to do.
They're nice in that they can counter very-fast-moving missiles -- can't outrun light or the laser's panning speed -- but I don't know if a powerful laser is necessarily a cost-effective way to deal with a large number of inexpensive drones.
There are cheap continuous operation 2 kW fiber lasers for material processing which could be enough for the flimsier slower drones.
Do those maintain the kind of beam coherency required for long-range use?
I think that the weaponized lasers I've seen in actual military use, like the AN/SEQ-3, are pulse lasers. I don't know why that is the case; if I had to guess, it might be necessary to avoid some forms of defenses, like producing so much thermal expansion so quickly that it tears apart ablative armor or prevents the target from rotating or rotating some form of shield to change the point exposed to the laser. I don't really follow laser technology, though. Are these capable of pulsed output?
The small drones do not require a long range use, since you are going to detect them only late, and need to terminate them within few seconds.
I have seen an improvised optics on a Youtube channel where a 2 kW continuous operation fiber laser had enough energy flux at 100 m or farther.
Nah, lasers too big. It would be a simple birdshot shotgun. Its detection and aiming.
When they are high up, they can be hard to spot and hear.
But a pair of sensitive mic's and a camera designed to look for them could easily be paired with some AR glasses.
somebody already put lasers on F35 and israelis are using ground-based lasers as a complement to iron dome
Yeah, have you seen the size of those? Those are chem lasers in order to get the wattage needed to destroy something.
Plus you need the electronics/mechanics to track the device perfectly to keep the laser on target in order for it to do damage.
All completely unnecessary to drop a small drone out of the sky.
there are also fiber lasers with enough power for small, slow targets like drone and size small enough to fit in a modern western fighter jet pod. targeting is done via radar roughly and then the same optics , or similar optics that laser uses later