Humor
"Laugh-a-Palooza: Unleash Your Inner Chuckle!"
Rules
Read Full Rules Here!
Rule 1: Keep it light-hearted. This community is dedicated to humor and laughter, so let’s keep the tone light and positive.
Rule 2: Respectful Engagement. Keep it civil!
Rule 3: No spamming!
Rule 4: No explicit or NSFW content.
Rule 5: Stay on topic. Keep your posts relevant to humor-related topics.
Rule 6: Moderators Discretion. The moderators retain the right to remove any content, ban users/bots if deemed necessary.
Please report any violation of rules!
Warning: Strict compliance with all the rules is imperative. Failure to read and adhere to them will not be tolerated. Violations may result in immediate removal of your content and a permanent ban from the community.
We retain the discretion to modify the rules as we deem necessary.
view the rest of the comments
So I'm doing this calculation as I write this comment so I'm commited regardless of the outcome.
Assuming we can get all of the solar systems material and use nuclear fusion to turn all of the gas into heavier elements (I assume anyone dismantling solar systems has workd out fusion) that results in about 9.3 x 10^14 square km of living space. about 1.83 million earths.
The total surface area of the solar system (with rough guesses for the size of the rocky cores of the gas giants is about 9.8 x 10^9 square km.
Since we can't really detect small planets in other solar systems I'm going to assume they all have roughly the same amount of planet as our own one. So all in all we get just under 100,000 solar systems worth of living surface.
Ok so its actually about 0.1% of the milky way in terms of living space at best. But thats still pretty damn good and its all withing fairly managable lightspeed communication range of just a few minutes delay at worst. And we could get to 100x that if we could do starlifting and removed just 14% of the suns mass.
Hum... Well, just try to calculate how much mass/m^2 of area your arrangement uses. You'll see the problem.