AMUSING, INTERESTING, OUTRAGEOUS, or PROFOUND
This is a page for anything that's amusing, interesting, outrageous, or profound.
♦ ♦ ♦
RULES
① Each player gets six cards, except the player on the dealer's right, who gets seven.
② Posts, comments, and participants must be amusing, interesting, outrageous, or profound.
③ This page uses Reverse Lemmy-Points™, or 'bad karma'. Please downvote all posts and comments.
④ Posts, comments, and participants that are not amusing, interesting, outrageous, or profound will be removed.
⑤ This is a non-smoking page. If you must smoke, please click away and come back later.
Please also abide by the instance rules.
♦ ♦ ♦
Can't get enough? Visit my blog.
♦ ♦ ♦
Please consider donating to Lemmy and Lemmy.World.
$5 a month is all they ask — an absurdly low price for a Lemmyverse of news, education, entertainment, and silly memes.
view the rest of the comments
From the study:
Objective
We aimed to perform the first placebo-controlled double-blinded test that investigates the effect of biodiversity on immune tolerance.
Methods
In the intervention group, children aged 3–5 years were exposed to playground sand enriched with microbially diverse soil, or in the placebo group, visually similar, but microbially poor sand colored with peat (13 participants per treatment group). Children played twice a day for 20 min in the sandbox for 14 days. Sand, skin and gut bacterial, and blood samples were taken at baseline and after 14 days. Bacterial changes were followed for 28 days. Sand, skin and gut metagenome was determined by high throughput sequencing of bacterial 16 S rRNA gene. Cytokines were measured from plasma and the frequency of blood regulatory T cells was defined as a percentage of total CD3 +CD4 + T cells.
Results
Bacterial richness (P < 0.001) and diversity (P < 0.05) were higher in the intervention than placebo sand. Skin bacterial community, including Gammaproteobacteria, shifted only in the intervention treatment to resemble the bacterial community in the enriched sand (P < 0.01). Mean change in plasma interleukin-10 (IL-10) concentration and IL-10 to IL-17A ratio supported immunoregulation in the intervention treatment compared to the placebo treatment (P = 0.02). IL-10 levels (P = 0.001) and IL-10 to IL-17A ratio (P = 0.02) were associated with Gammaproteobacterial community on the skin. The change in Treg frequencies was associated with the relative abundance of skin Thermoactinomycetaceae 1 (P = 0.002) and unclassified Alphaproteobacteria (P < 0.001). After 28 days, skin bacterial community still differed in the intervention treatment compared to baseline (P < 0.02).
Conclusions
This is the first double-blinded placebo-controlled study to show that daily exposure to microbial biodiversity is associated with immune modulation in humans. The findings support the biodiversity hypothesis of immune-mediated diseases. We conclude that environmental microbiota may contribute to child health, and that adding microbiological diversity to everyday living environment may support immunoregulation.