this post was submitted on 12 Jun 2024
45 points (88.1% liked)

Ask Science

8645 readers
1 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 1 year ago
MODERATORS
 

We often talk about the climate impact based on greenhouse gases, but extracting fuel from the ground and using it in exothermal processes of course also releases energy as heat.

This is mostly¹ in contrast with renewables, which make use of energy that's not long-term contained to begin with, so would end up as heat in our atmosphere anyways.

So, my question is: Does the amount of energy released by non-renewables have any notable impact on our global temperature? Or would it easily radiate into space, if we solved the greenhouse gas problem?


¹) In the case of solar, putting up black surfaces does mean that less sunlight gets reflected, so more heat ultimately gets trapped in our atmosphere. There's probably other such cases, too.

you are viewing a single comment's thread
view the rest of the comments
[–] TauZero@mander.xyz 2 points 5 months ago

Given a radiative forcing coefficient of ln(new ppm/old ppm)/ln(2)*3.7 W/m**2 I have previously calculated that for every 1kWh of electricity generated from natural gas, an additional 2.2 kWh of heat is dumped into the atmosphere due to greenhouse effect in every year thereafter (for at least 1000 years that the resulting carbon dioxide remains in the air). So while the initial numbers are similar, you have to remember that the heat you generate is a one-time release (that dissipates into space as infrared radiation), but the greenhouse effect remains around in perpetuity, accumulating from year to year. If you are consuming 1kW of fossil electricity on average, after 100 years you are still only generating 1.67kW of heat (1kW from your devices and .67kW from 60% efficient power plant), but you also get an extra 220kW of heat from accumulated greenhouse gas.

I have wondered this question myself, and it does appear that the heat from the fossil/nuclear power itself is negligible over long term compared to the greenhouse effect. At least until you reach a Kardashev type I civilization level and have so many nuclear/fusion reactors that they noticeably raise the global temperature and necessitate special radiators.