Selfhosted
A place to share alternatives to popular online services that can be self-hosted without giving up privacy or locking you into a service you don't control.
Rules:
-
Be civil: we're here to support and learn from one another. Insults won't be tolerated. Flame wars are frowned upon.
-
No spam posting.
-
Posts have to be centered around self-hosting. There are other communities for discussing hardware or home computing. If it's not obvious why your post topic revolves around selfhosting, please include details to make it clear.
-
Don't duplicate the full text of your blog or github here. Just post the link for folks to click.
-
Submission headline should match the article title (don’t cherry-pick information from the title to fit your agenda).
-
No trolling.
Resources:
- selfh.st Newsletter and index of selfhosted software and apps
- awesome-selfhosted software
- awesome-sysadmin resources
- Self-Hosted Podcast from Jupiter Broadcasting
Any issues on the community? Report it using the report flag.
Questions? DM the mods!
view the rest of the comments
Like several people here, I've also been interested in setting up an SSO solution for my home network, but I'm struggling to understand how it would actually work.
Lets say I set up an LDAP server. I log into my PC, and now my PC "knows" my identity from the LDAP server. Then I navigate to the web UI for one of my network switches. How does SSO work in this case? The way I see it, there are two possible solutions.
I generally understand how SSO works within a curated ecosystem like a Windows-based corporate network that uses primarily Microsoft software for everything. I have various Linux systems, Windows, a bunch of random software that needs authentication, and probably 10 different brands of networking equipment. What's the solution here?
Your confusion is confusing me lol
Wdym? That's not a thing, you can have some devices on LDAP some with local logins and some with OIDC or any other combination. Authentication is generally an application layer thing and switches operate at layer 2 maybe 3 if it's doing some routing. As long as your network has a functioning DHCP server the web UI of the switch will be able to communicate with the LDAP server that you configure it to
I think I'm misunderstanding how LDAP works. It's probably obvious, but I've never used it.
If my switch is expecting a username and password for login, how does it go from expecting a web login to "the LDAP server recognizes this person, and they have permissions to access network devices, so I'll let them in."?
Also, to be clear, I'm referring to the process of logging in and configuring the switch itself, not L2 switching or L3 routing.
If the switch supports it, you login with local credentials first, navigate to its config page and configure LDAP under there. You'll tell it the IP address of the LDAP server as well as give it its client side configuration. You give it a bind account credentials (a dedicated service account with as minimal permissions as needed) that it uses to lookup the users on the server as well as Organization Unit paths and such
When a user goes to login the switch will query the provided credentials against the LDAP server, if it's valid the LDAP server will respond with a success and the switch will log the user in
Generally there is always a local account fallback in the event that the LDAP server is unavailable for whatever reason