this post was submitted on 27 Dec 2024
12 points (92.9% liked)

Ask Science

8812 readers
41 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 2 years ago
MODERATORS
 

Most people know that a microwave works by exciting water molecules, but I'm not interested in the dangers of the high voltage/current of a magnetron. I wonder what might be possible with scrap consumer drivers such as a piezo, speaker drivers, or ultrasonic inducers, preferably at a frequency outside of the core human audible spectrum.

  1. Would an induced vibration in an around 60°C, lightly convective environment, likely significantly increase the evaporation rate of water moisture absorbed within the filament of a spool of consumer grade 3d printing filament such as PLA, PETG, PC, TPU, or Aramid?
  2. Would certain frequencies likely alter performance?
you are viewing a single comment's thread
view the rest of the comments
[–] RamblingPanda@lemmynsfw.com 1 points 1 week ago

There was a tech demo (I think? It's been a while) of an ultrasonic (clothes) dryer. They used sound waves to excite water droplets and extract them from the fabric. I don't think it would be possible with filament.

Maybe a vacuum and gentle heating?