139
submitted 10 months ago by will_a113@lemmy.ml to c/science@beehaw.org

A new discovery reveals that astrocytes, star-shaped cells in the brain, play a key role in regulating fat metabolism and obesity. These cells act on a cluster of neurons, known as the GABRA5 cluster, effectively acting as a “switch” for weight regulation.

The MAO-B enzyme in these astrocytes was identified as a target for obesity treatment, influencing GABA secretion and thus weight regulation.

KDS2010, a selective and reversible MAO-B inhibitor, successfully led to weight loss in obese mice without impacting their food intake, even while consuming a high-fat diet, and is now in Phase 1 clinical trials.

you are viewing a single comment's thread
view the rest of the comments
[-] mookulator@mander.xyz 35 points 10 months ago

Here’s todays winner for most unintelligible title

[-] wahming@monyet.cc 22 points 10 months ago* (last edited 10 months ago)

Funnily, I understood that. There's been a theory that our current obesity epidemic is caused by an environmental factor influencing our brains into targeting a higher ideal weight than it otherwise should. This is the 'switch' the title is referring to, and they've presumably discovered its existence and a way to influence it. Of course, there might be more than one...

[-] Sodis@feddit.de 7 points 10 months ago

The "switch" is most likely highly processed food and added sugar in everything you buy.

[-] wahming@monyet.cc 4 points 10 months ago* (last edited 10 months ago)

There is good reason to think otherwise. You might find this an interesting read:

http://achemicalhunger.com

[-] Sodis@feddit.de 3 points 10 months ago

I do not have time right now to read the whole thing, but what strikes me as odd, is that the author blames everything on contaminants, when a change in lifestyle could also be an option. They write about indigenous people moving to western societies and becoming fat, blaming it on industrial food contaminants, but ignore, that western people do not exercise enough. At least mention it and give a reason why you think, that this does not factor into it.

Then they also generalize about people in the western world getting obese at the same rate, which is not true at all. People in the US are more obese than in the Netherlands, for example. Japan has one of the lowest average BMIs in the world. It just doesn't add up. Furthermore, there is a lot of talking about causation, when they only prove correlation.

[-] wahming@monyet.cc 4 points 10 months ago

All those factors are addressed at some point. Keep reading!

[-] Sodis@feddit.de 3 points 10 months ago

Nah, sorry, I was out, when they stated, that more exercise and eating less does not help (and then using an arbitrary time span of 12 months). If you violate the laws of physics in your analysis, it is definitely wrong.

[-] wahming@monyet.cc 3 points 10 months ago

Calories in calories out is a pretty discredited theory, if that's what you are referring to. The human body is not a closed system, so laws of physics is about as irrelevant as possible. The body can influence how much energy to absorb and burn, within limits.

Seriously, all the points you're bringing up were fully addressed at some point in the article. It's fine if you can't be bothered to read, but it makes no sense to belittle it in that case.

[-] LogarithmicCamel@feddit.uk 2 points 10 months ago

This is not true. The laws of thermodynamics apply to open systems as well as long as you take into account the energy that enters and leaves the system, which is exactly what calories in, calories out mean. The brain influencing how many calories are spent is just part of calories out. What doesn't work is equating calories out with imprecise estimates from websites, watches etc, or equating calories in with imprecise calorie counts from food labels that people often miscount anyway. But when calories are carefully measured by scientists (i.e. in a metabolic chamber) and everything is accounted for, it's calories in, calories out all the way.

[-] Sodis@feddit.de 2 points 10 months ago

The body can influence how much energy to absorb and burn, within limits.

Yes and with that you have an upper limit of how much energy food can give to your body. If your body does take less than this energy, you will lose weight even faster. It can't take more energy than is provided by the food. Raise your exercise level above your maximum intake and you will lose weight. It's thermodynamics.

[-] wahming@monyet.cc 2 points 10 months ago

Seriously, all the points you're bringing up were fully addressed at some point in the article. It's fine if you can't be bothered to read, but it makes no sense to belittle it in that case.

[-] tryptaminev@feddit.de 1 points 10 months ago

sorry, but i have to agree with @Sodis here. Calories in Calories out provides hard physical limits. If your article does nit acknowledge such fundamentals, it is questionable how reliable it is otherwise.

[-] wahming@monyet.cc 2 points 10 months ago

It does. It's amazing how many people will debate without reading the material under discussion. What do you want me to do, paste the whole thing in a comment? It's the length of a short book. I would love to discuss it, but not if nobody else has bothered reading it.

[-] Sodis@feddit.de 1 points 10 months ago

I am trying, but it is just not well backed by data. The author goes on about diets all the time, grossly generalizing and totally ignoring, that it is also important how much you consume. They cite an example of France in the 1800s and say, that they ate more bread and butter (the link to the source not working). Okay, sure. And then they say, that they could still maintain their health easily, followed by the statement, that they exercised more, but this minor difference is not enough to explain it. Like, what are they going on about? In 1800 about two thirds of the population were working on farms, that's not just "a bit more exercise". And no word about food scarcity. People just couldn't afford gluttony. Often enough they were just one bad harvest away from a famine. It's ridiculous to assume, that they got to the same calorie intake on their bread, butter and dairy diet, that we have today with the amounts of sugar we eat and the affordability of food.

And while they probably exercised more on average than we do, the minor difference in exercise isn’t enough to explain the enormous difference in weight.

That statement is just plain wrong. Let's say a minor difference in exercise is 50kcal a day. That's about 6min running at 10km/h. This adds up to 18250kcal a year, which translates to over 2kg of body weight in ONE year. Multiply that by multiple years and it adds up quite fast. Keep that in mind for the following statement:

Many of them were farmers or laborers, of course, but plenty of people in 1900 had cushy desk jobs, and those people weren’t obese either.

Well, how did people get to these cushy desk jobs? By not available cars? How did they get their groceries? How did they clean their clothes? That's all stuff, that takes a minimum of exercise nowadays. What did they do on their free time? It probably wasn't sitting in front of the screen with minimal movement.

That's just the first of these "mysteries" and the whole thing is written in this style. They take an observation and then give an explanation for it, that fits their narrative. Alternative explanations are either not acknowledged or ruled out on flimsy evidence.

Here, from the CICO part:

Sources have a surprisingly hard time agreeing on just how much more we eat than our grandparents did, but all of them agree that it’s not much. Pew says calorie intake in the US increased from 2,025 calories per day in 1970 to about 2,481 calories per day in 2010. The USDA Economic Research Service estimates that calorie intake in the US increased from 2,016 calories per day in 1970 to about 2,390 calories per day in 2014. Neither of these are jaw-dropping increases.

How are these not giant increases in calorie intake? This metric is per DAY. It adds up fast over years. We are speaking about 16kg worth of body weight in calories per year. Okay, they addressed this in the interlude:

Studies show that people with obesity eat and expend more calories than lean people. From this study, for example, consider this sentence: “TDEE was 2404±95 kcal per day in lean and 3244±48 kcal per day in Class III obese individuals.” From this perspective, the average daily consumption per Pew being 2,481 calories per day doesn’t seem like much — that’s about what lean people expend daily.

TDEE includes exercise. Class 3 obese is a BMI of 40, so for a 1.8m tall male, that is 130kg, lean is probably at the lower end of normal, so 65kg. Then you can calculate the basal metabolic rate for both cases, leading to 1655kcal/day for the lean and 2300kcal/day for the obese. The difference is exercise. So lean people burn ~800kcal worth of exercise while obese people burn ~900kcal, but at double the weight. Since calorie burning during exercise goes linear with weight, you can conclude, that lean people workout more than obese people. So their argument does not work.

I never said, that it would be easy to lose weight. It definitely is hard. Your body is adapted to your lifestyle and breaking out of your habits and completely changing your lifestyle can be extremely hard. However, blaming some mysterious contaminant will not help people lose weight. Especially, when things like liquid calories tend to add a lot to your calorie intake, but your body does not really register them. Our body has evolved to control its body weight over thousands of years to a different type of diet. I do really not know, why the authors think, that subjecting it to the modern day achievements of high calorie foods and liquid calories will not affect this balance.

[-] wahming@monyet.cc 1 points 10 months ago

Thanks! This is exactly what I was hoping for, some critical analysis of the article's methodology and conclusions. I'm not debating any of your claims above, just gonna use them as a jumping off point for more reading.

[-] Lmaydev@programming.dev 6 points 10 months ago

I wanted a huge brain and am now thoroughly disappointed 😞

this post was submitted on 04 Sep 2023
139 points (100.0% liked)

Science

12822 readers
11 users here now

Studies, research findings, and interesting tidbits from the ever-expanding scientific world.

Subcommunities on Beehaw:


Be sure to also check out these other Fediverse science communities:


This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.

founded 2 years ago
MODERATORS