And now for 50 years worth of security updates for a phone like that. Not to mention what people might do with throwing a phone in the trash or something
Technology
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
I'd take it if it was a reasonable price, like 1k, and if I could just swap it into new phones every time I upgraded.
The problem is, power requirements tend to increase as computation power increases. And no doubt battery tech will improve in those 50 years.
They already sell phones over 1k that are expected to last ~4 years. You'll need to tag another zero or two to that price to incentivize manufacturers.
The EU are going to mandate removable batteries in phones, so I don't see any reason you can't take a standardised battery that lasts decades and swap it into your next phone, if they're all designed properly with compatibility with this miracle battery in mind :-D
At this moment, 1 gram of radioactive Nickel-63 costs around 4,000 USD. Nickel-63 isotope does not occur in nature, it is obtained by irradiating Nickel-62 inside a nuclear reactor.
The world needs breeder reactors anyways, build out a lot of gen 4 plants and make Nickle-63 to boot.
What happens when the casing get punctured? When you mass produce these devices these things will happen.
Probably the same as with tritium lumes. Only dangerous if you swallow the unshielded nickel.
Surely the battery itself would have sufficient protection on top of the devices chassis offering protection.
I can't say a Lithium Ion battery leaking in the body would bode very either.
Like a phone would last 50 years.
A tiny radioactive battery could keep a piece of e-waste using power for 48 years
How long can it power a disposable vape? Lol jk
Don't give them any ideas...
Sounds like alot of infertility and ass cancer in the future... lets see how this plays out
Nuclear power at small scale is already in use in devices. Some medical devices, smoke detectors etc. As long as there is proper shielding, the enclosure is robust enough, and the overall device is made easily serviceable, I'm all for it. I can understand the fear sentiment of anything flagged as radioactive, but radiation is all around us already. Idk, but the less we can ditch super toxic and explosive lithium the better.
The radioactive source isn't used for power in smoke detectors, it's used to detect smoke. What small scale devices use radioactivity actually for power?
My grampa had a pacemaker that was.
Edit: Source - https://osrp.lanl.gov/pacemakers.shtml
Edit2: For the smoke detectors, i know its not what powers it per se, as far as the electronics that sound the alarm and such. More pointing out it contains radioactive material, and is something in every (hopefully) house, and you likely walk by it often.
Here's the real issue with the bs fluff title and complete fabrication of what these can be used for. It says in the article the battery makes 100 microwatts at 3v. Well that's an insanely small wattage. Your phone requires like 2 to 10 watts when youre on it. Regular watts.
One single watt is 1,000,000 microwatts. It would take 10,000 of these radioactive 50 year batteries ran together in parallel for just a watt of power. You'd need like 100,000 of them in your phone to cover all power requirements.
The issue is not the radioactivity, it's the power density. Per the article, this is ~24x smaller than an average phone battery, but can supply only 100uW.
I have a relatively conservative phone use, and on average, my phone uses 450mW. That means that you'd need 4500 of those batteries in your phone. But the battery would also need to cover the power usage peaks, which are multiple times higher than the average power consumption.
Ya know we keep these things in our pants right?
No offense but it's a "I wasn't paying attention in high school physics" comment. It being beta decay with a half-life of 100 years should already indicate it's relatively safe. In fact someone else in this thread already already added the references showing how safe it is. If it's safe enough to power a pacemaker it's safe enough to sit in your phone that sits your pocket.
Personally I think that battery would have much bigger issues than safety, such as power requirements which are much harder to control with nuclear decay. Also obviously the device itself deprecating before the battery because tech will definitely advance a lot in 50 years, I imagine after a decade the phone will be useless. And finally the pricing considering Ni-63 doesn't occur in nature which means you need a specific process to create the materials necessary for the batter.
I imagine after a decade the phone will be useless.
I'm concede, useless was a bit harsh. Let's say "no longer fit for the average user" considering the average lifespan of a mobile phone is 2-4 years and a company doing software and security updates for a decade is very rare.
You are very much the exception here.
Finally, Asimov got it right
He got it right in a lot of aspects, partially because he didnt gave many details about certain stuff, but I remember a pretty good description of a nuclear powered e reader... if I remember it correctly, the nuclear part was a tiny nuclear reactor though
Some of the people here don't realize that our smoke detectors have radioactive elements inside it
Some people havent read the article where it states they use radioactive batteries like this in pacemakers and that there is no external radiation from the battery.
Depends, in my country ionization detectors have been banned over 20 years ago, you'll mostly find optical / photoelectric detectors here.
Battery scam #364256373
I'm seeing at least 5 of these per week now, can we PLEASE stop this bullshit?
Also, batteries from radioactive elements is one of the stupider ideas that has been floated around, sounds about at the same level as the thorium powered car.
It would be so nice if tech sites could write about actual tech and not CGI bullshit dreamed up by a guy who really isn't going to scam you, he just needs a little bit of start up capital for his Ferrari.
Remember when folks wore watches with radioactive paint on them? Good times.
It would've been great if they used reasonable safety precautions in making them.
Yeah, unfortunately most of the danger fell on the (usually female) factory workers who painted the radium on. Fun fact, we do absolutely still use radioactive shit to make watches glow today, it’s just much less dangerous and sealed in tiny vials. Also it’s a gas that won’t eventually flake and turn into super fine particulate, like the radium paints of yore.
It was more a problem of licking the little brushes than wearing the teeny bit on the wrist.
Flight safe, or nah?
What if it gets caught or crushed in the seat or luggage?
I've heard of these kinds of batteries before and it'd be cool to have long-running electronics, but would these produce enough power?
They do, if you give them enough room. And if you are born into an oil family.
The power density is about 0.01125m³ per watt. A high end smartphone (11w of peak power) with a body size similar to Galaxy s23 ultra, would be almost 10 meters thick.
Yeah. Sure.