It's imaginary numbers. Full stop. No debate about it. The idea of them is so wild that they were literally named imaginary numbers to demonstrate how silly they were, and yet they can be used to describe real things in nature.
Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either !asklemmyafterdark@lemmy.world or !asklemmynsfw@lemmynsfw.com.
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email info@lemmy.world. For other questions check our partnered communities list, or use the search function.
6) No US Politics.
Please don't post about current US Politics. If you need to do this, try !politicaldiscussion@lemmy.world or !askusa@discuss.online
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
I'm studying EE in university, and have been surprised by just how much imaginary numbers are used
EE is absolutely fascinating for applications of calculus in general.
I didn't give a shit about calculus and then EE just kept blowing my mind.
I was gonna ask how imaginary numbers are often used but then you reminded me of EE applications and that's totally true.
I mean, quaternions are the weirder version of complex numbers, and they're used for calculating 3D rotations in a lot of production code.
There's also the octonions and (much inferior) Clifford algebras beyond that, but I don't know about applications.
As far as I know, matrices were a "pure math" thing when they were first discovered and seemed pretty useless. Then physicists discovered them and used them for all sorts of shit and now they're one of the most important tools in in science, engineering and programming.
Huge in 3d graphics and AI.
The invention of the number 0, the discovery of irrational numbers, or l the realization that base 60 math makes sense for anything round, including timekeeping.
60 was chosen by the Ancient Sumerians specifically because of its divisibility by 2, 3, 4, and 5. Today, 60 is considered a superior highly composite number but that bit of theory wouldn’t have been as important to the Sumerians and Babylonians as the simple ability to divide 60 by many commonly used factors (2, 3, 4, 5, 6, 10, 12, 15) without any remainders or fractions to worry about.
Having watched all the veritasium math videos I feel like all the major breakthroughs in math were due to mathemicians playing around with numbers or brain teasers out of curiosity without a concrete use case in mind.
It’s crazy how engaging and well done Veritasium videos are and they’re just free to watch on YouTube.
Riemann went nuts working on higher dimensional mathematics and linear algebra. At the time there was not a clear use case for math higher than like 3 or 4 dimensions, but he drove himself crazy discovering it anyways. Today, this kind of math underlies all of artificial intelligence
Imaginary numbers probably, they're useful for a lot of stuff in math and even physics (I've heard turbulent flow calculations can use them?) but they seem useless at first
Strangest? Functional analysis, maybe. I understand it's used pretty extensively in quantum field theory, although I don't actually know firsthand.
That's a body of mathematics about infinite-dimensional spaces and the operations on them. Even more abstract ways of defining those operations exist and have come up as well, like in Tseirlson's problem, which recently-ish had a shock negative resolution stemming from quantum information theory.
There's constructions I find weirder yet, but I don't think p-adic numbers, for example, have any direct application at this point.
Integration.
Integration was literally developed to be useful